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Abstract. The dielectric and the loss functions of Ni(111) are calculated by the Full Potential Linear
Muffin Tin Orbitals (FPLMTO) ab initio method whithin the three-layers model (vacuum/surface/bulk).
Particular attention is devoted to determine surface and bulk state contributions to the spectra. Good
agreement is found with recent experimental EELS data on the Fe-covered Ni(111) surface.

PACS. 71.28.+d Narrow-band systems; intermediate-valence solids – 71.20.-b Electron density of states
and band structure of crystalline solids – 78.20.-e Optical properties of bulk materials and thin films

1 Introduction

Electron Energy Loss Spectroscopy (EELS) is a tech-
nique widely used to study surfaces and overlayers of
many materials [1]. Compared to optical spectroscopy,
e.g. Reflectance Anisotropy Spectroscopy (RAS) [2], it
has the advantage of a greater sensitivity to the sur-
face which compensates for its worse energy resolution
and greater invasivity. A recent development of this tech-
nique, the anisotropic [3] surface EELS, yields surface loss
anisotropies two orders of magnitude larger than those
obtained by RAS.

Theoretical progress in the interpretation of EELS
spectra is, however, scarce. On one side, modeling an
EELS spectrum usually assumes restrictions to the trans-
ferred momentum not always fulfilled in the experi-
ments [1,4]. On the other side, there is the need of an
accurate ab initio calculation of the spectral functions.
It is, therefore, desirable to improve both these aspects.
The EEL spectrum in the bulk is proportional to the loss
function f(q, ω), defined in terms of the dielectric function
ε(q, ω) as:

f = −Im(ε−1) =
ε2

ε21 + ε22
(1)
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where the subscripts 1, 2 indicate the real and imaginary
part of ε(q, ω), respectively. q and ω, understood in (1),
are the wave vector and energy transferred to crystal elec-
trons [1], respectively. If q is small with respect to the
characteristic wavectors of the system, e.g. the reciprocal
lattice vectors, the dependence of ε on it can be neglected
and the loss function in (1) is obtained in terms of the op-
tical dielectric function, ε(0, ω). Usually, calculations are
carried out within this scheme, the so-called dipole ap-
proximation, and neglecting local-field effects [3,4].

The structure of equation (1) makes the result very
sensitive to vanishing or small denominators. Therefore a
great accuracy in ε1 and ε2 must be achieved in the cal-
culations. Recently several calculations have been carried
out for the EELS spectra of bulk Pd [5–7]. The attempt
to improve the agreement with existing experiments [8]
has been successful, even neglecting local field effects , by
increasing substantially the accuracy of the adopted ab
initio calculations to attain a better convergence of ε in a
wide energy range. Among others, the Full Potential Lin-
ear Muffin Tin Orbitals (FP-LMTO) method [9,10] turned
out to be a very efficient ab initio scheme for the calcula-
tions of optical functions of both bulk metals [5] and metal
surfaces [11].

In the present work, we apply the FP-LMTO method
to interpret the results obtained by surface EELS mea-
surements [12] in systems of Fe overlayers on the Ni (111)
surface. We adopt essentially the three-layer model [13]
(bulk-surface-vacuum) to represent the interface and use
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the corresponding version of equation (1). We also have to
reconsider the usual dipole approximation, where the mo-
mentum transfer is assumed to be negligible. In fact, large
momenta are transferred to crystal electrons in the EELS
measurements [12] to be described by our calculations.

The general theoretical framework, along with com-
putational details of the FP-LMTO method and a short
review of the theory of surface EELS are given in Sec-
tion 2. We show how the dipole approximation can be
used to cope with the present situation of a large momen-
tum transfer. The comparison with experimental data is
discussed in Section 3 and the conclusions are drawn in
Section 4.

2 Method of calculation

2.1 Electronic structure

The calculation of the electronic structure and of the
optical functions in bulk Ni and at interfaces is done
within the Full Potential Linear Muffin Tin Orbital
[9,10] method in the framework of Density Functional
Theory (DFT) [14], using the exchange-correlation po-
tential of von Barth-Hedin [15] in the Local Density ap-
proximation (LDA). Many-body effects beyond DFT-LDA
(self-energy, electron-hole interaction effects) have been
shown to be small in noble metals [16]. We assume them
to be small also in Ni. This is an itinerant ferromagnet be-
low TC = 613 K. The exchange splitting amounts to 100–
300 meV and affects very little the minority- and majority-
spin electronic structure at the (111) surface [17,18]. This
splitting is surely overwhelmed by the intrinsic broadening
of the EELS spectra. We therefore perform calculations for
the paramagnetic phase within the DFT-LDA scheme.

As usual, the repeated slab scheme is assumed to
model the bulk-surface-vacuum system, representing the
truncated solid. The slab is made up by a fixed yet arbi-
trary number of atomic layers, symmetrically added on the
two sides of a central layer and terminated by a fixed yet
arbitrary number of vacuum layers. The optimal dimen-
sion of the slab is that for which the quantity of interest
(e.g. total energy, density of state, dielectric function etc.)
converges. In this scheme, the slab replaces the bulk unit
cell. In the FP-LMTO method the unit cell is divided into
finite spherical regions (the Muffin Tin Spheres), centered
around each atom, embedded in the so-called interstitial
region. The Kohn-Sham equations of DFT have different
solutions within the spheres and in the interstitial region.
These solutions are then matched at each sphere boundary
in a continuous and differentiable way, forming the muffin
tin orbitals centered on the muffin tin spheres. The muffin
tin orbitals are the sought-for basis functions, atomic-like
inside the MT spheres and given by linear combinations of
Hankel or Neuman functions outside. The latter ones, also
called tails or envelope functions are denoted by the κ2-
value (negative or positive) of the kinetic energy. The FP-
LMTO method is very appropriate for metallic systems
since its basis set, basically a localized one, describes well

narrow states like the d’s. As pointed out in detail else-
where [5], the number of basis functions included in the
expansion of the crystal wave function determines the ac-
curacy of the calculation. In the case of optical functions
the larger the basis the more extended the energy range
where optical transitions are included. The minimum ba-
sis set includes, for each atomic species, all the occupied
orbitals in the neutral atomic configuration and one single
tail for each atomic orbital.

The atomic configuration of Ni is [Ar]3d84s2. In our
calculations the basis set is made by the Ar core, able to re-
lax but not to hybridize, the valence configuration 3d84s2

and the six 4p orbitals to account for empty states. Two
different tails are considered for each state. An analogous
basis set turned out to be enough to reproduce correctly
the dielectric function of Cu and Ag (110) surface up to
7 eV [11]. A slab made by 11 layers of Ni(111) plus 6 vac-
uum layers satisfies the requirements of convergence for
the dielectric function of the interface [11].

The positions of all atoms in the slab are a primary in-
put of the calculations. Most highly symmetric clean sur-
faces of noble metals do not reconstruct. Hence we assume
ideal positions for the surface Ni atoms. When atoms are
adsorbed on the surface, there may be relaxation and/or
reconstruction: the atomic positions are to be determined
carefully, experimentally or by molecular-dynamics tech-
niques [19]. The determination of the atomic structure of
the first Fe layers growing on Ni(111) has been controver-
sial. Theoretical calculations [27] at 0 K indicated that the
energetically favored adsorption site was the hcp-hollow
and not the fcc one. A sub-sequent experimental investi-
gation [28] was performed with energy-scanned Photoelec-
tron Diffraction (PD) on a 0.6 ML film, grown at 130 K.
The results contradicted the previous findings, showing
that the Fe atoms were adsorbed at the fcc-hollow sites,
with Fe-Ni interlayer distance slightly expanded with re-
spect to the Ni-Ni one. In the present work, we use as the
input structure for the Fe layer the one obtained by a re-
cent experimental work [29] on Fe/Ni(111) films, studied
by angle-scanned PD in the 1-18 ML coverage range. For
the case of 1 Fe monolayer, which is considered here, Fe
atoms are assigned the atomic positions of the first missing
Ni layer, i.e. at the fcc-hollow sites.

The calculations of the electronic band structure for
the bulk and the (111) surface of Ni have been done
considering 47 and 36 k-points in the 3-D and 2-D ir-
reducible Brillouin Zone, respectively, to determine the
charge densities. The lattice parameter has been taken [23]
a = 6.65 a.u. In Figure 1 we show the energy bands of the
clean (111) Ni surface along two high-symmetry directions
of the 2-D Brillouin Zone. The flatness and position of the
d bands below the Fermi level (EF = 0 in the figure) will
be exploited for the evaluation of the EEL spectra in the
next section.

2.2 EEL spectra

Within the dipole and the Random Phase Approximations
(RPA), the imaginary part of the diagonal component ii
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Fig. 1. Surface band structure of Ni(111). K is the corner of
the 2D hexagonal BZ and X is the middle point of the edge.

of the dielectric tensor is calculated as [20]:

εii(ω) = 1 − 4πe2

m2�ω

∑
k

∑
locc

∑
nunocc

1
ωnl

(
|Πi

ln|2
ω − ωnl + iδ

+
|Πi

ln|2
ω + ωnl + iδ

)
(2)

where |Πln| is the momentum–operator matrix element
between the l occupied (valence) and n unoccupied (con-
duction) electronic states.

The real part, ε1 is then obtained by Kramers-Kronig
transforming ε2 [20]. In this framework we evaluated ε(ω)
of the (111) surface, clean and Fe covered, and of bulk Ni
from the ab initio calculated interband dipolar transitions
among valence and conduction electronic states accord-
ing to equation (2). Compared to the evaluation of the
electronic structure, the calculation of ε(ω), involving the
crystal wave functions, requires an increased number of
k-points in the interpolation scheme of the tetrahedron
method [21]. We used 752 and 256 k-values in the ir-
reducible 3-D and 2-D Brillouin Zone, respectively. The
intraband part of ε in the bulk has been evaluated, as
usual, from the Drude formulas with experimental values
of the plasma frequency and relaxation time [22] amount-
ing to 9 eV and 20 eV−1, respectively [23]. The same values
have been used, as an approximation, also for the surface
considered here. This procedure may induce only negli-
gible errors in the frequency range of interest here, that
is above 4 eV. From the dielectric function, the Electron
Energy Loss in the three-layers model can be calculated
using a formula, analogous to equation (1), which is given
below [4].

Before going into the details of the three-layer model
of the Loss function, however, we have to discuss the ar-
gument that allows us to apply the dipole approximation
for the optical transitions also in the present case. In the
EELS experiment of reference [12] the incident electron
beam was normal to the (111) surface of a Ni sample. The

scattered electrons were detected by a cylindrical mirror
analyser at an average angle of 20 degrees with respect
to the surface normal with an angular acceptance of 10
degrees. The energy of the incident electrons was 150 eV.
In these experimental conditions the values of the wave
vectors q transferred by the incident electron to the sur-
face are larger than the first Brillouin Zone boundaries
and spread over one or more Brillouin Zones. Therefore,
it seems no longer possible to interpret the experimen-
tal data with the imaginary part of the surface dielectric
function ε2(q, ω) calculated in the limit q → 0. Neverthe-
less, as shown below, taking into account the details of
the band structure enables us to keep the q → 0 limit
valid in practice. In fact, inspection of Figure 1 suggests
the following considerations. Let us consider a non vertical
transition between a given occupied (at ki) and unoccu-
pied (at kf ) band. The transition energy is almost the
same as that of the vertical transition across the same
bands at kf . The experimental spectrum embodies, at a
given loss energy, many such non-vertical transitions, each
of them corresponding to a transferred q-value within the
acceptance of the analyser. Due to the flatness of the oc-
cupied d bands, all these transitions occur essentially at
the same energy, although with different probabilities (i.e.
matrix elements). Therefore, our approximation consists
in taking a transition probability at zero momentum in-
stead of the correctly averaged one. We expect this to be
qualitatively correct but with quantitative energy discrep-
ancies of the order of the dispersion of the d bands (about
1 eV) between experimental and theoretical spectra. The
results shown in the next sections confirm the soundness
of this approach.

The calculation of the loss function and the EEL spec-
tra [4] within the three-layers model starts from consid-
ering the probability P (k, k′) that an incoming electron
with momentum k is scattered to a state of momentum k′,
loosing an energy �ω, which is given by:

P (k, k′) =
2

(ea0π)2
1

cosφi

K ′

K

qy

|q2
y + q2

z |
Img(qy, ω), (3)

where

Img(qy, ω) = Im
2

1 + εeff (qy, ω)
= f(qy, ω). (4)

This equation is the surface three-layer model version
of equation (1). It contains the effective dielectric function
of the three–layer system:

εeff (qy, ω) = εs
εb cos(qzds) − iεs sin(qzds)
εs cos(qzds) − iεb sin(qzds)

, (5)

which is a sort of average of the dielectric function over
surface and bulk, depending on qz, the component perpen-
dicular to the surface of the transferred momentum. qz is
proportional to qy, the surface component of the trans-
ferred momentum, according to

qz ≡ qy(−εy/εz)1/2 = iqy(εy/εz)1/2. (6)
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Finally, the surface dielectric function εs is given by:

εs =
√

εyεz, (7)

i.e., the geometrical average of the two components of
the dielectric tensor, εy and εz in the scattering plane.
This formula has been first derived by Ibach and Mills
for an isotropic surface [1] (for which εy = εz) and then
generalized to an anisotropic surface by Selloni and Del
Sole [4].

In our case, qy and hence qz are very large. Moreover,
qz has a predominant imaginary part so that the terms
sin(qzds) and cos(qzds) behave like hyperbolic functions.
Hence, the large qz limit is easily obtained by neglecting
the vanishing exponentials therein, getting:

lim
qy→∞ εeff (qy, ω) = εs. (8)

This result is very reasonable: for large momentum
transfer qz perpendicular to the surface, the electron-
surface interaction is strongly local, so that only the
surface layer determines the loss probability, while the
substrate is not effective. The surface dielectric function
defined in equation (7) accounts for the anisotropy of the
surface, where the z direction (the surface normal) is dif-
ferent from the directions on the surface (x and y). Here
the plane of scattering is assumed to be the yz plane,
which leads to the presence of εy in (6). A last remark is
about the kinematical factor (the fractions on the right
hand side of (3)): in the experimental conditions of refer-
ence [12], the kinematical factor is almost constant, and
therefore has not been included in the calculations dis-
cussed below.

It is possible to separate electronic transitions into
surface-to-surface (ss), surface-to-bulk (sb), bulk-to-
surface (bs) and bulk-to-bulk (bb) state transitions in the
calculation of ε2 [11,24], to interpret the structures in ε
and f in terms of transitions involving bulk and/or sur-
face states. On the other hand, starting from ε2 of the Ni
slab and of bulk Ni, we obtain the surface dielectric func-
tion, εsurf , within the three-layers model using the linear
relation:

Nsurf εsurf = Nslabεslab − (Nslab − Nsurf )εbulk. (9)

The parameters Nslab and Nsurf indicate respectively
the total number of layers of the slab and the number of
layers assigned to the surface. Having calculated the sur-
face dielectric function from (9), and its ss, sb, and bs
components (which coincide with the slab ones, since sur-
face states do not affect εb), we can find the bulk-bulk
transition contribution, εbulk→bulk

surf , to the surface dielec-
tric function:

εsurf = εsurf→surf
slab + εsurf→bulk

slab

+ εbulk→surf
slab + εbulk→bulk

surf . (10)

The meaning of the, seemingly odd, definition εbulk→bulk
surf

is the following one: bulk states of course are present not

Fig. 2. Calculated imaginary part of the dielectric function of
bulk Ni.

only in bulk, but also near the surfaces, although modi-
fied by the surface potential; transitions across them can of
course occur also in the surface region [24]. In a slab calcu-
lation this situation leads to a bb contribution to the slab
dielectric function and to surface optical properties, often
called the ‘surface-modified bulk-state contribution to sur-
face optical properties’ [24]. In our notation, εbulk→bulk

surf is
the bulk-state contribution to the surface dielectric func-
tion. It can be extracted from (10), since the lhs can be
calculated from (9), and the first three terms on the rhs
are obtained from the slab calculation.

All the previous relations are valid for the imaginary
and real parts of the y and z components of the dielec-
tric tensor: the former is worked out directly, whereas the
latter is obtained by Kramer-Kronig transforms.

The knowledge of the surface dielectric function fully
disentangled in its surface and bulk terms is very helpful
to get information about the origin of the structures in
the EELS spectra.

3 Results and discussion

The starting point for the calculation of the EELS spectra
using equations (4) and (5) is the bulk and slab dielectric
function, whose imaginary parts are plotted in Figures 2
and 3, respectively. For the slab are shown the two dif-
ferent spectra corresponding to q-directions parallel and
perpendicular to the surface.

We used equation (9), fixing the number of the surface
layers equal to 4 [25], to obtain the imaginary part of the
surface dielectric function from the spectra shown in Fig-
ures 2 and 3, for the y direction, parallel to the surface,
and for the z direction, perpendicular to it. The result-
ing imaginary part of the surface dielectric function εs,
the geometrical average of equation (7), is shown in Fig-
ure 4, while its real part is shown in Figure 5. The main
structures show up at 6 eV and 15 eV for the imaginary
part and at 5 eV and 14 eV for the real part. Moreover,
from Figure 5 we see that at 10 eV the real part of the
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Fig. 3. Calculated imaginary part of the dielectric function of
the Ni(111) slab.

Fig. 4. Calculated imaginary part of the surface dielectric
function of Ni(111) (see Eq. (7)).

surface effective dielectric function becomes equal to −1,
so that, according to equation (4), we expect to find the
surface-plasmon peak in the spectrum near this energy.
To calculate EELS spectra we used equation (4). The sec-
ond derivative, changed of sign, of the EEL spectrum with
respect to the energy, is the function −f ′′, shown in Fig-
ure 6, that corresponds to the experimental data of refer-
ence [12]. We can see that, within the expected error of �
1 eV, due to the d-band dispersion, there is good agree-
ment between f ′′ calculated (see Fig. 6) and measured (see
Fig. 7).

We try now to understand the origin of the structures
in Figure 6. According to the physical interpretation of
the maxima and minima of the −f ′′ function discussed
in reference [26] we assign, to a first approximation, each
minimum to an absorption peak and each maximum to
an EELS peak. The latter point is also apparent from
the two curves related to the clean surface in Figure 6.
We can recognize in −f”, shown in Figure 6, maxima at
4.5 eV, 7.5 eV, 10.5 eV, 11.5 eV, 17.5 eV and 21.5 eV.

Fig. 5. Calculated real part of the surface dielectric function
of Ni(111) (see Eq. (7)).

Fig. 6. Calculated second derivative of the loss function of
Ni(111) (short dashed) and Fe/Ni(111) (long dashed). Loss
function of Ni(111) (solid).

Fig. 7. Experimental second derivative of the loss function
for the clean and 1ML Fe-covered Ni(111) surface from refer-
ence [12].
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Fig. 8. Imaginary part of the dielectric function calculated
for the bulk-surface, surface-bulk, surface-surface transitions
of the Ni(111) slab.

Fig. 9. Contribution to the surface imaginary part of the di-
electric function of bulk-bulk transitions.

The decomposition of the surface dielectric function into
the contributions of s-s, s-b, b-s and b-b transitions is
shown in Figures 8 and 9. We can now interpret the struc-
tures appearing in the loss function second derivative of
Figure 6. The maxima at 4.5 eV and � 8 eV, correspond-
ing to the first two large peaks in Figure 7, are due to b-b
transitions (see Fig. 9). The structures between 10 and 11
eV, probably washed out by a larger broadening in the ex-
periment, are due to s-s transitions (see Fig. 8). The peak
above 11 eV, corresponding to the large shoulder at � 10
eV in the experimental curve of Figure 7, is due to the sur-
face plasmon (εs = −1, see Fig. 5). The broad structure
between 14 and 24 eV comes from a region where Re(εs)
is close to zero (see Fig. 5) and the imaginary part of the
dielectric function has also some structures (see Fig. 4).
We could interpret this broad peak as the “bulk plasmon”,
calculated, however, with the surface dielectric function.
Notice that the surface and “bulk” plasmons produce the
most important features in the loss function, always shown

in Figure 6. Our findings generally agree with the exper-
imental ones of Figure 7. The discrepancies in the energy
positions are probably due to the neglect of effects beyond
DFT-LDA [11]. We stress that our “bulk” structures are
actually due to b-b transition effects on the surface dielec-
tric function defined in (7).

Finally, the calculated second derivative of the loss
function for the Fe-covered surface is compared to that
of the clean surface in Figure 6. The experimental trends
of Figure 7 are confirmed: the first peak broadens, while
the shoulder at � 10 eV, due to the surface plasmon of Ni,
weakens. The latter finding can be understood in terms of
a shadowing effect of the Fe overlayer on the Ni substrate,
since the present experimental arrangement is extremely
sensitive to the surface. A similar effect occurs for the
broad structure around 20 eV, due to the ‘bulk’ plasmon
of Ni.

4 Conclusion

We have carried out an ab initio calculation of loss spec-
tra for the Ni(111) surface, both clean and covered by
one monolayer of Fe. We have shown that the data of ref-
erence [12], although implying large momentum transfers,
can be qualitatively interpreted in terms of the widely used
dipole approximation, due to the flatness of the filled Ni
d bands. We have analysed the structures appearing in
the loss spectrum of the clean surface in terms of elec-
tronic transitions involving surface states and/or surface-
modified bulk states. The latter transitions yield a rele-
vant contribution to the surface dielectric function, which
determines the loss processes in the conditions of refer-
ence [12]. The observed shoulder at � 10 eV is interpreted
as the surface plasmon of Ni, while the weak structure
at 20 eV is a remnant of the bulk plasmon. In spite of
these names, it should be borne in mind that the whole
loss function is here determined by the surface dielectric
function. Strictly speaking, “bulk plasmon” here means
that the surface dielectric function vanishes; hence, the
plasmon of the surface sheet is excited. In a similar way,
“surface plasmon” here means the plasmon of the (outer)
vacuum-surface boundary. Finally, the changes of the loss
probability upon adsorption of one monolayer of Fe, cal-
culated by us, are in qualitative agreement with those ob-
served experimentally.
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HPRN-CT-2000-00167).
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